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Overview

• Social science concepts are multidimensional and inherently noisy.
• A tool for guaranteeing the sample size necessary to achieve a minimum level of accuracy with a precise

level of confidence
• Researcher-specified bounds on conceptual complexity and labeling error

Probably Approximately Correct (PAC) Model
Data-Generating distribution
• We employ the notation of domain χ , label set Y, and (binary) concept classes C. We consider

a probability distribution D (unknown) over χ.
• A labeled set of training examples S = {(x1, y1), ..., (xm, ym)} is generated by taking xi ∼ D

i.i.d
True Error
• Consider a data-generating distribution D and the true labeling concept c. The true error of a

classification rule h with respect to D is the probability that h makes a mistake.

errD(h) = Prx∼D[h(x) ̸= c(x)] (1)

Empirical Error
• Given a sample set S, the empirical error of a concept h with respect to S is the fraction of

instances in S that are incorrectly labeled by h.

errs(h) =
1

m

m∑
i=1

1(h(xi) ̸= yi)) (2)

Intuition
• Assuming that S is coming from a fixed but unknown distribution D, the goal is to use the

sample set S to learn a concept h that has a small true error on D.
• We assume that there is an unknown concept c ∈ C that truly labels instances in distribution
D. We also assume that we have access to another set of concepts H from which we have to
choose the concept. For ease of representation, we often call H the class of hypotheses.

Sample Complexity Bounds (SCB)
• Sample complexity characterizes the number of examples used or required by a PAC learning

algorithm to attain error rate greater than ϵ with probability bounded by δ, given noisy labels
with probability η < 1/2.

• We provide three tools for researchers to explicitly characterize the sample size needed to guar-
antee desired accuracy, based on researcher-specified assumptions.

• Combining [5] with [1], a general lower bound on sample complexity (SCB) is given by

Ω(
V C(C)

ϵ(1− 2η)2
+

log(1/δ)

ϵ(1− 2η)2
) (3)

where V C(C) indicates the Vapnik–Chervonenkis dimension, which measures the underlying
complexity of the target concept.

Estimating Vapnik–Chervonenkis dimension (VCD) for complexity bounds
• Calculating VCD analytically is challenging for most concepts [4].
• Solution: estimate empirically based on known relationship between worst-case generalization

error and V C(C) = d:
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Figure 1: Simulation for Estimat-
ing the Risk Bounds

The y-axis gives the estimated bound on the relation-
ship between empirical risk and sample size for a given
classifier. Since the functional form of this relationship is
known up to a constant given the true VCD, we can then
estimate the VCD of any classifier through non-linear re-
gression [6]. Moreover [4] shows that this estimate is con-
sistent in the number of simulations.

This is just a specific way of estimating that function
that doesn’t depend on the data-generating process, as flip-
ping the labels maximizes This is just a specific way of
estimating that function that doesn’t depend on the data-
generating process, as flipping the labels maximizes

Simulation-based Analysis

Step 1: Decide on desired accuracy parameters and concept definition
Step 2: Calculate the VCD of the chosen model using the above estimation procedure [4]
Step 3: Generate a fine grid of points over the k-dimensional feature space
Step 4: Classify these points according to the pre-defined concept
Step 5: Generate observed labels by adding independent random noise with probability η
Step 6: Calculate sample complexity bounds empirically for a range of acceptable error rates
Step 7: Repeat the process according to a range of values of “optimism” parameter (analytic
bound corresponds to worst-case sampling).

Figure 2: Learning to Classify Polyarchies

1. A stylized version of the well-known model of “polyarchy” proposed by in [2] - an unusually
well-defined concept.

2. Empirical research on democracy is hampered by small sample size.

3. Values are calculated by fixing η = 0.05 and either ϵ = 0.05 or δ = 0.01

4. Theoretical bound gives 188 cases as required minimum sample size assuming perfectly square
classification region.

5. This corresponds closely to simulation results under “pessimistic” sampling regime correspond-
ing to Figure 2 (observations that provide less discriminant value are more likely).

Application to Predicting Recidivism [3]
• Comparing the overall accuracy and bias in human assessment with the algorithmic assessment

of COMPAS

• 20 human coders recruited through Amazon’s Mechanical Turk

• 7 Features (e.g., age, sex, number of juvenile misdemeanors, number of juvenile felonies, num-
ber of prior crimes, crime degree, and crime charge) are used.

• Linear discriminant analysis (as in original paper) trained on a random 80% of training and
20% testing split, with VC dimension of 8.

• Best achievable accuracy with high confidence is approximately 35%, but additional benefit of
sample size above 500 is minimal.

• Highlights concept formation problem: advantages of big data are dependent on precise speci-
fication of target concept.

Figure 3: Simulation Analysis When ϵ = 0.05 (Left) & ϵ = 0.35 (Right)
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