Learning from Noise:

Applying Sample Complexity for Political Science Research

Perry Carter \& Dahyun Choi

Ph.D. Candidates
Department of Politics
Princeton University
Correspondence: dahyunc @ princeton.edu

```
Social science concepts are mutdimenco Overview
*epis are multidimensional and inherently noisy,
- A tool for guarantee
```

```
Resercher-specified bondorer
```

```
Resercher-specified bondorer
```


Probably Approximately Correct (PAC) Model

Data-Generating distribution

- We employ the notation of domain χ, label set \mathbf{Y}, and (binary) concept classes C . We consider a probability distribution \mathbf{D} (unknown) over χ.
- A.i.d

True Error

- Consider a data-generating distribution D and the true labeling concept c. The true error of a classification rule h with respect to D is the probability that h makes a mistake.

$$
\begin{equation*}
\operatorname{err}_{D}(h)=\operatorname{Pr}_{x \sim D}[h(x) \neq c(x)] \tag{1}
\end{equation*}
$$

Empirical Error

- Given a sample set S, the empirical error of a concept h with respect to S is the fraction of instances in S that are incorrectly labeled by h .

$$
\begin{equation*}
\left.\operatorname{err}_{s}(h)=\frac{1}{m} \sum_{i=1}^{m} 1\left(h\left(x_{i}\right) \neq y_{i}\right)\right) \tag{2}
\end{equation*}
$$

ntuition

- Assuming that S is coming from a fixed but unknown distribution D , the goal is to use the sample set S to learn a concept h that has a small true error on D .
- We assume that there is an unknown concept $c \in C$ that truly labels instances in distribution D. We also assume that we have access to another set of concepts H from which we have to hoose the concept. For ease of representation, we often call H the class of hypotheses.

Sample Complexity Bounds (SCB)

- Sample complexity characterizes the number of examples used or required by a PAC learning algorithm to attain error rate greater than ϵ with probability bounded by δ, given noisy labels with proba
We provide three tools for researchers to explicitly characterize the sample size needed to guarantee desired accuracy, based on researcher-specified assumptions.
Combining [5] with [1], a general lower bound on sample complexity (SCB) is given by

$$
\Omega\left(\frac{V C(\mathbf{C})}{\epsilon(1-2 \eta)^{2}}+\frac{\log (1 / \delta)}{\epsilon(1-2 \eta)^{2}}\right)
$$

where $V C(\mathbf{C})$ indicates the Vapnik-Chervonenkis dimension, which measures the underlying complexity of the target concept.

Estimating Vapnik-Chervonenkis dimension (VCD) for complexity bounds

- Calculating VCD analytically is challenging for most concepts [4]
- Solution: estimate empirically based on known relationship between worst-case generalization error and $V C(\mathbf{C})=d$:

$$
f(d ; n)= \begin{cases}1 & n<\frac{d}{2} \\ \frac{\log ^{2 n}+1}{\frac{d}{d}-a^{\prime \prime}}\left(\sqrt{1+\frac{d^{\prime}\left(\frac{n}{n}-\mu^{\prime \prime}\right)}{\log _{\frac{n}{d}}^{d}+1}}+1\right) & \text { else }\end{cases}
$$

The y-axis gives the estimated bound on the relationship between empirical risk and sample size for a given classifier. Since the functional form of this relationship is known up to a constant given the true VCD, we can then
estimate the VCD of any classifier through non-linear re gression [6]. Moreover [4] shows that this estimate is con sistent in the number of simulations.

Simulation-based Analysis

Step 1: Decide on desired accuracy parameters and concept definition
Step 1: Decide on desired accuracy parameters and concept definition
Step 2: Calculate the VCD of the chosen model using the above estimation procedure [4] Step 3: Generate a fine grid of points over the k-dimensional feature space Step 4: Classify these points according to the pre-defined concept
Step 5: Generate observed labels by adding independent random noise with probability η Step 6: Calculate sample complexity bounds empirically for a range of acceptable error rates Step 7: Repeat the process according to a range of values of "optimism" parameter (analytic bound corresponds to worst-case sampling)

. A stylized version of the well-known model of "polyarchy" proposed by in [2] - an unusually well-defined concept.
2. Empirical research on democracy is hampered by small sample size.
3. Values are calculated by fixing $\eta=0.05$ and either $\epsilon=0.05$ or $\delta=0.01$
4. Theoretical bound gives 188 cases as required minimum sample size assuming perfectly square classification region.
5. This corresponds closely to simulation results under "pessimistic" sampling regime correspond 5. This corresponds closely to simulation results under pessimistic sampling regime
ing to Figure 2 (observations that provide less discriminant value are more likely).

Application to Predicting Recidivism [3]

- Comparing the overall accuracy and bias in human assessment with the algorithmic assessment of COMPAS
20 human coders recruited through Amazon's Mechanical Turk
7 Features (e.g., age, sex, number of juvenile misdemeanors, number of juvenile felonies, num ber of prior crimes, crime degree, and crime charge) are used.
- Linear discriminant analysis (as in original paper) trained on a random 80% of training and 20% testing split, with VC dimension of 8
- Best achievable accuracy with high confidence is approximately 35%, but additional benefit of sample size above 500 is minimal.
- Highlights concept formation problem: advantages of big data are dependent on precise specification of target concept.

Figure 3: Simulation Analysis When $\epsilon=0.05$ (Left) \& $\epsilon=0.35$ (Right)

Acknowledgements

We would like to thank Brandon Stewart and Kosuke Imai for their discussion at various stages of his project. $A(R)$ package is on the way. Suggestions and contributions are welcome!

References

1] Javed A Aslam and Scott E Decatur. On the sample complexity of noise-tolerant learning. Information Processing Letters, 57(4):189-195, 1996.
[2] Robert A Dahl. Polyarchy: Participation and opposition. Yale university press, 2008.
[3] Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science advances, 4(1):eaao5580, 2018.
[4] Daniel J McDonald, Cosma Rohilla Shalizi, and Mark Schervish. Estimated vc dimension for risk bounds. arXiv preprint arXiv:1111.3404, 2011
$[5]$ Hans Ulrich Simon. General bounds on the number of examples needed for learning probabilistic concepts. In Proceedings of the sixth annual conference on Computational learning heory, pages 402-411, 1993.
[6] Vladimir Vapnik, Esther Levin, and Yann Le Cun. Measuring the vc-dimension of a learning machine. Neural computation, 6(5):851-876, 1994

