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Overview

• Question: What constitutes “good enough” data for experiments?
• Method: Applying sample complexity bound at the design stage in a high-cost research setting
• Empirical Setting: Open-ended online survey in Nigeria
• Goal of Experiment: Measuring “polarization” inferred from historical narratives among students
• Contribution: Demonstrating the validity of sample complexity for resource-intensive measurement tasks

Probably Approximately Correct (PAC) Model
• True Error: Consider a data-generating distribution D. The true error of a concept h with

respect to D is the probability that h makes a mistake.

R(h) = Prx∼D[h(x) ̸= y] (1)

• Empirical Error: Given a sample set S, the empirical error of a concept h with respect to S is
the fraction of instances in S that are incorrectly labeled by h.

R̂m(h) =
1

m

m∑
i=1

1(h(xi) ̸= yi) (2)

• Given a hypothesis class, H , the learner evaluates the risk, |R(h)− R̂m(h)|, of each h in H on
the given sample and outputs a member of H that minimizes the empirical risk.

∀h ∈ H, |R(h)− R̂m(h)| < ϵ (3)

Figure 1: Schematic Illustration of PAC Learning

• The accuracy parameter ϵ determines how close the output can be to the optimum.
• The confidence parameter δ indicates the likelihood that the classifier will meet the accuracy

requirement.
• Researchers seek to achieve PA(e > ϵ) ≤ δ, for an algorithm A producing hypotheses h with

error rate e = |R(h)− R̂m(h)|.

Sample Complexity Bounds (SCB)
• The smallest size necessary to achieve PAC-Learning for all distributions and target concepts,

given noisy labels with probability η < 1/2.
• Combining [7] with [1], a general lower bound on sample complexity (SCB) is given by
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where V C(C) indicates the Vapnik–Chervonenkis dimension, which measures the underlying
complexity of the target concept.

• Calculating VCD analytically is challenging for most concepts [5].
• Solution: estimate empirically based on known relationship between worst-case generalization
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Simulation-based Approach of Carter and Choi (2024)
Step 1: Decide on desired accuracy parameters and concept definition
Step 2: Calculate the VCD of the chosen model using the above estimation procedure [5]
Step 3: Generate a fine grid of points over the k-dimensional feature space
Step 4: Classify these points according to the pre-defined concept
Step 5: Generate observed labels by adding independent random noise with probability η
Step 6: Calculate sample complexity bounds empirically for a range of acceptable error rates
Step 7: Repeat the process according to a range of values of “optimism” parameter (analytic
bound corresponds to worst-case sampling).

Key advantages of Carter and Choi (2024)
• A more precise alternative to the assumption that the sample size is “large enough” for

asymptotic approximations to hold

• Considering the role played by labeling error and concept definition on model performance, a
factor that has generally been overlooked in applied work

• scR Package [3] provides computationally efficient way to implement the proposed methods.

Table 1: Comparing Sample Complexity with Power Analysis

Power Analysis Sample Complexity

Purpose Probability of detecting an effect Expected degree of predictive accuracy

Setting Distributional features All distributions & All target concepts

Researcher-specific Effect size, significance level, Accuracy, confidence,
Parameters power misclassification parameters

Open-ended Online Survey in Nigeria
• In experimental settings, the high cost of data acquisition motivates researchers to use the small-

est sample size necessary for reliable statistical inference.

• Limitation of power analysis: target sample size on a power analysis does not account for the
additional sampling demands of upstream measurement tasks.

• Most readily available datasets have predictable structures, making them a weak test of SCB.

• The design stage in a high-cost research setting, where the impact of misjudging sample size is
significant and the sampling distribution is unpredictable

• Estimating the historical narratives about Nigeria’s civil war among Nigerian students

• Open-ended responses that have traditionally been considered more difficult to analyze [6]

• Measuring a latent concept (= “Polarization”) using topic modeling and random forest

Figure 2: Example Settings for Online Surveys
The survey is conducted online,
with hybrid recruitment. Enumerators
recruit participants face-to-face in
randomly selected secondary schools
(stratified by ethnic composition
and neighborhood income), across
8 cities (selected based on ethnic
composition and level of wartime
violence). Once students provide
contact information, invitations to
participate in the survey will be sent
to a random selection of respondents
via WhatsApp or email. This method
follows the practices of [4], which
were highly effective in West Africa.

Application of Sample Complexity: Random Forest
• Minimum description length principle: Trading off empirical risk for saving description length

• We define a tree with n nodes, described in n +1 blocks, each of size log2(d + 3) bits.

• We aim to find a tree with both low empirical risk and a number of nodes n not too high.

• While trees of arbitrary size have infinite VC dimension, we can restrict the tree and construct
an ensemble of trees [2], thereby reducing the danger of overfitting.

R(h) ≤ R̂m(h) +

√
(n + 1)log2(d + 3) + log(2/δ)

2m
(5)

• Smallest sample size m that satisfies the condition 5 with a probability of at least 1− δ for
every n and every tree h ∈ H with n nodes.

• Estimating the empirical VC dimension of random forest using the scR package [3]

Figure 3: Estimating VC Dimension of random forest

• The SCB under researcher-set parameters with ϵ = δ = η = .1 is 4708 (assuming 100 features).

→ The necessary minimum sample size to achieve 90% accuracy achieved with 90%
confidence and a noisy rate of 10%

• Actual survey planned for August 19 - September 9

• Following data collection, predicted accuracy will be evaluated against the observed results
through cross-fold sample splitting.
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